

GSU Hodoscope (with show and tell)

Megan Connors, Xiaochun He, Murad Sarsour and Sawaiz Syed
ISU HCal Workfest
October 22, 2016

About the Hodoscope

- This hodoscope was designed and built for testing a modular RICH prototype detector at Fermilab for the future EIC experiments for identifying charged hadron particles in the momentum range between 3 – 10 GeV/c.
- The hodoscope was built from scratch at GSU, which includes the following components:
 - Finger scintillators: 1cm x 1cm x 20cm
 - Cut from 1cm x 20cm x 20cm scintillator sheets from ELJEN at GSU physics shop
 - Wavelength shifting fibers were glued inside a groove
 - Readout PCB boards: include a spacer, preamp and service boards which were designed and built by GSU students.
 - MPPCs (i.e., SiPM) bias voltages were set with GSU built power supplies (one per channel) from a Raspberry PI.
 - The fingers are mounted inside an extruded aluminum frame

What does it look like?

How does it look like?

mRICH test setup

Scintillator

Wavelength shifting fiber glued inside a

Readouts

Readout PCBs (3D renderings done by students)

Assembly prior to Fermilab

- GSU students and Carola Butler assembling the hodoscope
- A partially assembled hodoscope

Hodoscope at Fermilab

mRICH setup at Fermilab

Assembly Continues

New students also being trained

Next Calorimeter Beam Test

- Is this useful for tracking the beam for the sPHENIX HCal tests?
- In conjunction with the wire chamber?
- If so...
 - We can design a patch pnael to break out the amplified signals from each finger and feed them into the sPHENIX DAQ
 - 2 hodoscopes could be made available

More photos

Components

Assembling power supply

